Core Mathematics C2 Paper E

1. A sequence of terms is defined by

$$u_n = 3^n - 2, \quad n \ge 1.$$

(*i*) Write down the first four terms of the sequence.

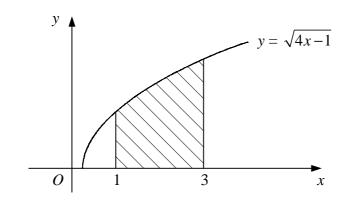
The same sequence can also be defined by the recurrence relation

$$u_{n+1} = au_n + b, \quad n \ge 1, \quad u_1 = 1,$$

where a and b are constants.

2.

(*ii*) Find the values of a and b.



The diagram shows the curve with equation $y = \sqrt{4x-1}$.

- (*i*) Use the trapezium rule with four intervals of equal width to estimate the area of the shaded region bounded by the curve, the *x*-axis and the lines x = 1 and x = 3. [4]
- (ii) Explain briefly how you could use the trapezium rule to obtain a more accurate estimate of the area of the shaded region. [1]
- 3. (i) Expand $(2 + y)^6$ in ascending powers of y as far as the term in y^3 , simplifying each coefficient. [4]
 - (*ii*) Hence expand $(2 + x x^2)^6$ in ascending powers of x as far as the term in x^3 , simplifying each coefficient. [3]

[4]

[1]

PMT

4.
$$f(x) = \frac{4}{2 + \sin x^{\circ}}$$
.

(<i>i</i>)	State the maximum value of $f(x)$ and the smallest positive value of x for which	
	f(x) takes this value.	[2]

- (*ii*) Solve the equation f(x) = 3 for $0 \le x \le 360$, giving your answers to 1 decimal place. [5]
- 5. (a) Given that $t = \log_3 x$,

			2	
<. · >	write down an ex	• • •	$C \downarrow C = 1 = 2$	F13
(1)	write down an ev	nression in term	r = 0	
(1)		pression in term	$10 01 i 101 102 \langle \Lambda \rangle$	111

(*ii*) show that
$$\log_9 x = \frac{1}{2}t$$
. [4]

(b) Hence, or otherwise, find to 3 significant figures the value of x such that

$$\log_3 x^2 - \log_9 x = 4.$$
 [3]

6. Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^3 - 4}{x^3}, \quad x \neq 0,$$

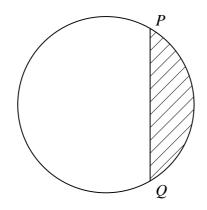
and that y = 0 when x = -1, find the value of y when x = 2. [8]

7. A student completes a mathematics course and begins to work through past exam papers. He completes the first paper in 2 hours and the second in 1 hour 54 minutes.

Assuming that the times he takes to complete successive papers form a geometric sequence,

(<i>i</i>)	find, to the nearest minute, how long he will take to complete the fifth paper,	[3]
(ii)	show that the total time he takes to complete the first eight papers is approximately 13 hours 28 minutes,	[2]
(iii)	find the least number of papers he must work through if he is to complete a paper in less than one hour.	[4]

Turn over



The diagram shows a circle of radius 12 cm which passes through the points P and Q. The chord PQ subtends an angle of 120° at the centre of the circle.

(<i>i</i>)	Find the exact length of the major arc PQ.	[2]
(ii)	Show that the perimeter of the shaded minor segment is given by $k(2\pi + 3\sqrt{3})$ cm, where k is an integer to be found.	[4]
(iii)	Find, to 1 decimal place, the area of the shaded minor segment as a percentage of the area of the circle.	[4]
	$f(x) = x^3 - 9x^2 + 24x - 16.$	
<i>(i)</i>	Evaluate $f(1)$ and hence state a linear factor of $f(x)$.	[2]
(ii)	Show that $f(x)$ can be expressed in the form	
	$\mathbf{f}(x) = (x+p)(x+q)^2,$	
	where p and q are integers to be found.	[4]
(iii)	Sketch the curve $y = f(x)$.	[2]
(iv)	Using integration, find the area of the region enclosed by the curve $y = f(x)$ and the <i>x</i> -axis.	[5]

8.

9.